Above and Below (Solitaire XVII – From the Pillowbook XII)

I wrote the first Solitaire post in March, exactly four months ago, being almost certain that after maybe two months I could safely move on to two person games. Now it looks like this will have to continue for a while. At least I can assure you that by the time I run out of topics, the pandemic will be over, one way or the other…

HeawoodMap 01

Today’s puzzle is concerned with the Heawood map. This is a map consisting of seven hexagons arranged as up above in the Heawood tile to the left, with edge-zigzags matching in pairs of equal color. This matching can be used to periodically tile the plane as to the right, or to interpret this map as a map on a torus, thus showing that one needs at least 7 shades of gray to shade a general map on a torus. (7 is indeed optimal).

Hexpillows 01

After the square pillows and triangular pillows, it is now finally time to introduce the 14 hexagonal pillows above. That’s all there is with curvy edges only — if you allow for straight edges, you get (too) many more. It is (for some of us) tempting to replace the hexagons of the Heawood tile by seven pillow tiles, so that the entire Heawood tile can be used to periodically tile the plane. If you only use one type or pillow, there are only two possibilities:

One 01

With two different pillows, it gets more interesting (and prettier). Below are two (slightly different) solutions using the same two pillows.

Two 2 01

And here are two more, again using the same two pillows, which are less similar. You can find four more by reflecting all these, but that’s it with two pillows.

Two 1 01

 

Now let’s jump ahead and try to use seven different pillows. Here is a simple example:

Simplex 01

How hard is this? There are 3432 ways to select 7 different pillows from the 14, but only 380 of these choices allow you to form a Heawood tile. That’s maybe not too hard. But, of course, you (I) would want  to assemble the remaining 7 pillows also into a Heawood tile. That’s today’s challenge, and I think it’s rather difficult (there are still many different solutions). The hint below may not be that useful. It merely shows the contours of the Heawood tiles for one particular solution to this problem. But at least it now becomes a very concrete puzzle: Just tile the two regions using all of the 14 pillows exactly once.

Hint 01