Taming the Snakes

Computer scientists, dog owners, parents, and most other generic humans are happy when their trained subjects behave as expected. Mathematicians are happy when things develop other then expected.

For instance, Rafael and I have built a machine that takes an explicit planar curve, lifts it to a space curve, and twirls an explicit minimal surface around it. The emphasis here is on explicit, because that allows to do all kinds of things to the minimal surface that would be hard to do otherwise.

So we started feeding curves to the machine that we hadn’t built it for.

Logspiral

As a first example, the logarithmic spiral is lifted to a space curve such that both ends of the spiral move up, and the speed with which the surface twists is much faster at the inner piece. We call this the cobra surface.

A few years after David, Mike, and I had shown that the genus one helicoid is embedded, I was contacted by a science freelance writer. She said that this helicoid with the handle had been pretty cool, whether we had maybe some new examples that looked very different and cool, too. We hadn’t. But here they come. The Archimedean spiral is next. Again, the surface spirals faster when the curve is more strongly curved.

Archimedes

If you liked the trefoil surfaces, you will like the next one, too: Here we start with a common cycloid, and the lifted curve becomes another trefoil knot.

Cycloid3b

Finally, the pentagram cycloid lifts to a knotted curve without cusps, and we can make another prettily knotted minimal surface.

Pentagram

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s